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Wireless PHY

3

• The wireless PHY is responsible for delivering a bit 
stream from a transmitter to one or more receivers. 
It's not as easy as it sounds.

• Tx/Rxs need to be coordinated in time, space, 
frequency, phase, encoding/language

• Wireless means there are many sources of error, 
reasons for failure, etc.



PHY Standards
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• In WiFi networks, IEEE 802.11 defines several 
versions of the PHY, including extensions for mesh, 
vehicular, etc.

• In telecom, the GSM 05.xx series defines the Um 
physical layer, and other standards build on it, 
including ITU-T standards like 4G.

• In PANs, standards like 802.15.1 (Bluetooth), .3 
(high-rate, e.g., UWB), and .4 (low-rate, e.g., 
Zigbee) all define their own PHY models.



Wireless PHY Services
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• Various parts of PHY operation:
– Radio interface: spectrum allocation, signal

strength, bandwidth, carrier sensing, phase sync, …
– Signal processing: equalization, filtering, training,

pulse shaping, signaling, …
– Coding: channel coding, bit interleaving, fwd

error correction, …
– Modulation (mapping bits to signals)
– Topology, antennas, duplex/simplex, multiplexing, and so 

much more

• PHY is typically the most complex part of a wireless 
network



MODULATION
How to deal with a noise or imperfect wireless channels?
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Baseband vs. Carrier Modulation

n Modulation: is the process of varying one or more 
properties of a periodic waveform, called the carrier 
signal, with a separate signal called the modulation 
signal that typically contains information to be 
transmitted.

n Baseband modulation: send the “bare” signal

n Carrier modulation: use the signal to modulate a higher 
frequency signal (carrier).
• Can be viewed as the product of the two signals
• Corresponds to a shift in the frequency domain
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Modulation

n Changing a signal to convey information

n Ways to modulate a sinusoidal wave
n Volume: Amplitude Modulation (AM)
n Pitch: Frequency Modulation (FM)
n Timing: Phase Modulation (PM)

n In our case, modulate signal to encode a “0” 
or a “1”. (multi-valued signals sometimes)
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Amplitude Modulation
n AM: change the strength of the signal.
n Example: High voltage for a 1, low voltage for a 0

0 0 1 1 0 0  1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0  1 1 1 0

1     0         1        0      1
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Frequency Modulation
n FM: change the frequency

0   1     1   0     1    1    0    0    0     1
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Phase Modulation
n PM: Change the phase of the signal

1        0     1   
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WIRELESS STANDARDS
How wo regulate wireless vendors?
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Standards

n Availability of interoperable equipment from 
multiple vendors

n Prevents a “Tower of Babel” situation
• Equipment from different vendors will interoperate if it 

complies with the standard
• Alliances and certification bodies assure interoperability

• Wi-Fi for 802.11

n Lowers costs to consumers
• Both through competition and economies of scale

n Fight for standards from countries, e.g, in 5G.
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IEEE 802 Standards

Maintained by IEEE 802 LAN/MAN Standards Committee (LMSC):

n 802.1 Overview, Architecture, Internetworking and Management
n 802.2 Logical Link Control
n 802.3 Ethernet (CSMA/CD PHY and MAC)
n 802.5 Token Ring PHY and MAC

n 802.11 Wireless LAN-Wi-Fi
n 802.12 Demand Priority Access

n 802.15 Wireless PAN
n 802.16 Broadband Wireless Access
n 802.17 Resilient Packet Ring
n 802.18 Radio Regulatory
n 802.19 Coexistence
n 802.20 Mobile Broadband Wireless Access
n 802.21 Media Independent Handoff
n 802.22 Wireless Regional Area Network
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Typical Standards and 
Protocols

802.11 Wi-Fi as an example
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802.11

n 802.11 data link and physical layer have a lot of 
members…

Data link
layer

Physical
layer
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Wireless “Alphabet Soup”
n Q: What is Wi-Fi?
n A: Wi-Fi is a family of wireless network protocols based 

on the IEEE 802.11 family of standards, especially with 
specially designed physical layers, including:

n 802.11b:
n Most common wireless protocol.  Uses 2.4GHz frequency, with 1, 2, 

5.5,11 Mbps bandwidth.  (5 Mbps is more typical).
n 802.11a:  

n Uses 5.5GHz range, 54 Mbps bandwidth (~20 Mbps is typical 
performance).  Produces too much radio power to be certified in 
medical areas.

n 802.11g:
n Uses 2.4GHz band and is compatible with 802.11b.  Also 54 Mbps

bandwidth (~20 Mbps typical)
n Almost a~z are all used!
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802.11 Range

802.
11b

802.
11g

802.
11a
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What are the basic threats 
faced at the PHY layer?
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Back to the Party
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Physical Layer Misbehavior

26

• Open, shared medium is vulnerable
– Anyone can “talk” → greedy or malicious nodes can easily 

interfere
• Prevention/degradation of communication via jamming
• Cutting off available resources influences network control, 

operation, and performance

– Anyone can “listen” → curious or malicious nodes can 
easily eavesdrop on communication

• Recovery of information exchanged by neighbors (violation of 
data, identity, operation/intention privacy)

• Inference/learning, tracking, observing



Challenges
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• How can we prevent a curious or malicious party 
from eavesdropping on wireless transmissions at the 
physical layer?

• How can we prevent a greedy or malicious party 
from interfering with PHY transmission and 
reception?

• For both:
– Short answer, we can't!
– However, we can make it much more difficult



Spread Spectrum
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• Spread spectrum is an extension of multiplexing 
that uses randomization to increase diversity and 
improve performance in various ways
– Frequency-hopping spread spectrum (FHSS) builds on FDM 

allowing devices to pseudo-randomly move among 
frequency channels

• If one channel is particular good or bad, everyone shares it 
randomly

– Direct-sequence spread spectrum (DSSS) builds on CDM 
allowing devices to pseudo-randomly move among 
different code spaces

• Code spaces are analogous to frequency bands



Multiplexing

FDM – frequency 
division multiplexing

TDM + FDM
as in GSM

CDM – code division 
multiplexing

images from [Erik Lawrey; SkyDSP.com]

TDM – time division 
multiplexing (flip x-y)
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FHSS
• FHSS: Sender and receiver synchronize a hopping 

pattern over a large bandwidth
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DSSS Encoding
• DSSS encoding 

maps long symbols 
to sequences of 
short chips

• Shorter chip 
duration means 
wider bandwidth
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Benefits
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• FHSS:
– Narrow-band interference only has an effect for a small 

fraction of the time
– Single-channel eavesdroppers can't “follow” the signal, 

need to use much wider bandwidth to hear everything

• DSSS:
– Narrow-band interference is “despread” at the receiver, 

more like quiet wide-band noise
– Other signals are (nearly) orthogonal
– Eavesdropper has to know/guess code to decode



Cryptographic SS
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• Building off basic spread spectrum, we can add 
cryptographic randomization to make hopping 
schedule and code sequences secret
– Using a symmetric key as a seed to a pseudo random 

number generator (PRNG) makes the hopping schedule
or code sequence secret

• In both cases, this requires symmetric key 
management, which has its own issues



Issues with Spread Spectrum
• To be effective against 

curiosity/greed/malice, hopping sequences
(FHSS) and spreading codes (DSSS) must be
private！
– In many implementations, these codes are given to

all group members – if becoming a group member is
easy, there's no barrier

– If group membership is tightly guarded, can it be
bought or stolen?

• If codes can't be obtained, can they be learned?
– Code reuse allows for statistical analysis and recovery
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Further Hardening the PHY
• If spread spectrum isn't enough, what else?
– Multiple diversity can protect against multiple threats

at numerous levels

– Implementations must consider the threat models
and adapt to unexpected behaviors

• Prevent statistical analysis, adapt to learning adversaries
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Let's focus on Jamming
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Jamming
• Conceptually, jamming is a physical layer denial-of-

service attack that aims to prevent wireless 
communication between parties

Alice

Mallory

Bob

Messages

Interference
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How Does Jamming Work?

e + Noise

Receiver can 
decode message 

if SINR ≥ τ

Path Loss

Jamming decreases SINR, causes decoding failure and
packet loss

But, it's much more complicated than that...

Receiver
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Sender

Jamming
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Attacker can be MUCH 
quitter than the speaker

SINR metric captures effects of geometry

SINR = (Rx signal power) / (noise power + Rx jamming power)

as P = k P d
tr t t tr

Often modeled
- a as P
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jr
= k P d

j j jr

Often modeled
- a

Typically random 
variable N

0

Geometry Matters



HIT!

hit? 

hit...

Can be modeled as a (random) multiplier in 
the “I” term of the SINR metric

Timing Matters
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Orthogonality Matters
Channel k Channel m ≠ k

fail

DSSS encoded narrowband
fail?
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Generalized Jamming
• A jammer allocates energy/signal to diverse time,

freq, etc. resources according to an attack strategy
S
– Effect E(S) of the attack
– Cost C(S) of the attack

– Risk R(S) of being detected
/ punished

– With other metrics, an 
optimization emerges

Time

Fr
eq

ue
nc

y
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Pkt Pkt PktLink Traffic Pkt P

Constant

Random 

Periodic

Reactive
[Xu et al., 2006; Mpitziopoulos et al., 2009]

time
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Jamming Strategies
Time Domain



Link Traffic

Broadband 

Single Ch.

Single 
Sub-Ch. 
Multiple 
Sub-Ch.

Jamming Strategies
Frequency Domain

Ch. 1 Ch. 2 Ch. 3 … Ch. k
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Jamming

Alice

Bob

Mallory

Messages

Interference
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How can we protect against jamming?
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Jamming Detection & Defense
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• Goal: detect and localize jamming attacks, then 
evade them or otherwise respond to them

• Challenge: distinguish between adversarial and 
natural behaviors (poor connectivity, battery 
depletion, congestion, node failure, etc.)
– Certain level of detection error is going to occur
– Appropriate for deployment in wireless networks

• Approach: coarse detection based on packet 
observation



Basic Detection Statistics
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• Received signal strength (RSSI)
– Jamming signal will affect RSSI measurements
– Very difficult to distinguish between jamming/natural

• Carrier sensing time
– Helps to detect jamming as MAC misbehavior
– Doesn't help for random or reactive cases

• Packet delivery ratio (PDR)
– Jamming significantly reduces PDR (to ~0)
– Robust to congestion, but other dynamics (node failure, 

outside comm range) also cause PDR →0



Advanced Detection
• Combining multiple 

statistics in detection 
can help
– High PDR + High RSSI
→OK

– Low PDR + Low RSSI →
Poor connectivity

– Low PDR + High RSSI →
? → Jamming attack?

Caveat: this assumes RSSI can be accurately measured
See [DeBruhl & Tague, SECON 2013]
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Jammed Area Mapping
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• Based on advanced detection technique, nodes can 
figure out when they are jammed

• At the boundary of the jammed area, nodes can get 
messages out to free nodes

• Free nodes can collaborate to perform boundary 
detection using location information



Evading Jamming
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• Nodes in the jammed region can evade the attack, 
either spectrally or spatially
– Spectral evasion →“channel surfing” to find open 

spectrum and talk with free nodes

– Spatial evasion →mobile retreat out of jammed area
• Need to compensate for mobile jammers ability to partition the 

network (see figure in paper)



What about dynamic attack and 
defense strategies?
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Optimal Jamming & Detection
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• Problem setup: each of the network and the 
jammer have control over random jamming and 
transmission probabilities
– Network parameter γ is probability each node will 

transmit in a time slot
– Attack parameter β is probability the jammer will 

transmit in a time slot

• Opponents can learn about goals through 
observation and optimize for min-max/max-min



Jamming Games

• What if both the attacker and defender are freely 
adapting in response to each other?
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Eavesdropping / Snooping
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How can the properties of the 
wireless medium actually help to 
achieve secure communication?
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“Wiretapping”
• In 1975, A. D. Wyner defined the wiretap channel to 

formalize eavesdropping

Channel

Alice

M → Encoder

Bob

→MDecoder

EveChannel

In Wyner's model, the wiretap 
channel is “degraded”, 
meaning Eve only sees a noisier 
signal than Bob sees
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Secrecy Capacity
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• Since the Alice →Eve channel is noisier than the 
Alice →Bob channel:
– Eve can't decode everything that Bob can decode
– i.e., there exists an encoding such that Alice can encode 

messages that Bob can decode but Eve can't

– There's a really nice Information Theory formalization of 
the concept of secrecy capacity, namely the amount of 
secret information Alice can send to Bob without Eve 
being able to decode

– I'll leave the details for you to explore



Degraded Eavesdropper?
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• In a practical scenario, is it reasonable to assume 
the eavesdropper's signal is more degraded than the 
receiver's?
– Probably not.

• What else can we do to tip the scales in the favor of 
the Alice-Bob channel?



Diversity of Receivers
The signal emitted by a transmitter looks 

“different” to receivers in distinct locations
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Measurement + Feedback
• Channel State Information (CSI):
– CSI is the term used to describe measurements of

the channel condition
– If Alice knows the CSI to Bob and to Eve, she can

find an appropriate encoding using the CSI 
measurements

– If Alice and Bob interact repeatedly, the
measurement and feedback actually increase the
secrecy capacity

• This can allow for secrecy capacity >0 even if Eve's channel is
less noisy than Bob's channel
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Jamming a autonomous car

62“Analyzing and Enhancing the Security of Ultrasonic Sensors for Autonomous Vehicles, ”IEEE IoTJ 2018

“该停却停不下来” "不该停却停下来"

• Attacker can jam the ultrasound of the car, 
making the obstacle “disappear”, or even 
generate a fake obstacle, e.g., a person



Jamming for Good
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• If Alice has diversity in the form of multiple radios 
or some collaborators:
– Alice & friends can use a jamming attack to prevent Eve 

from eavesdropping
– As long as they don't jam Bob at the same time

– Example: if the deployment geometry is known, Alice
can adjust power, antenna config, etc. so Bob's SINR is
high but Eve's is low



Secure Array Transmission
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• Antenna control can be used for transmission with
low probability of interception



Application
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• Application 1: Building on secrecy capacity:
– If two devices can communicate with a high probability 

guarantee that eavesdroppers cannot hear them, 
whatever they say is secret

– BUT how? Probably beamforming!

• Application 2: Secret messages → keys!

– Secret key generation is now possible using inherent 
properties of the wireless medium



Further Reading
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• For a really good summary of secrecy capacity, the 
formalization, secret key generation, and lots of 
excellent details:

– “Physical Layer Security” by Bloch and Barros
• Available at:

https://www.cambridge.org/core/books/physicallayer-
security/543CF3D1431805B6AE04A7AA72903D09

https://www.cambridge.org/core/books/physicallayer-security/543CF3D1431805B6AE04A7AA72903D09
https://www.cambridge.org/core/books/physicallayer-security/543CF3D1431805B6AE04A7AA72903D09
https://www.cambridge.org/core/books/physicallayer-security/543CF3D1431805B6AE04A7AA72903D09


More Benefit for the Party?
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Physical layer properties can help 
with authentication!
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Diversity of Senders
Signals captured by a receiver from senders in 

distinct locations look “different”
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Signalprints

• In a WLAN with multiple APs,
each AP sees different 
characteristics of packets 
from each sender
– Each AP can measure various 

packet features, some of which
are relatively static over
packets: e.g., received signal
strength

– A back-end server can collect
measurements and keep history
of packets from different
senders
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Signalprint Properties
• Difficult to spoof
– Spoofing node would require control of medium
– Transmission power control creates lower RSS at

every AP; differential analysis reveals power
control, but how?

• Correlated with physical location
– Attacker needs to be physically near target device

• Sequential packets have similar signalprints
– RSSI values are highly correlated for stationary sender

and receiver
• Note: not highly correlated with distance, but very

highly correlated with subsequent transmissions
71



Limitations
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• Signalprints with any reasonable matching rule 
cannot differentiate between nearby devices
– Masquerading/spoofing attacks are possible if physical 

proximity is easily achieved

• Low-rate attacks cannot be detected
– But, low-rate attacks have limited effects

• Multi-antenna attackers can cheat
• Highly mobile devices can't be printed



Summary
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Interference and eavesdropping are two of 
the most fundamental yet least understood 

vulnerabilities in wireless. 
There's still a lot of work to be done. 


